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A GRP-scheme is introduced for the numerical integration of the Euler system of equations 
of compressible reactive flow in a duct of variable cross section, subject to an external poten- 
tial. The GRP (generalized Riemann problem) scheme is based on an analytic solution of the 
GRP at jump discontinuities. It is a second-order scheme generalizing the first-order Godunov 
szheme, having the property of high resolution of shocks and other discontinuities. Some 
numerical examples are considered, including an infinite spherical reflected shock, a spherical 
blast wave and gas collapse under an external potential. 0 1990 Academic PIW, IX. 

1. INTRODUCTION 

Consider tke Euler equations that model the time-dependent flow of an inviscid, 
compressible, reactive fluid through a duct of smoothly varying cross section. 
addition to the hydrodynamical pressure force, we allow an external conservative 
field which does not vary with time. We are using here the quasi ~-dirne~si~~a~ 
approximation, namely, the hypothesis that all flow variables are uniform ac 
fixed cross section. Notice that our treatment applies in particular to all 
with planar, cylindrical, or spherical symmetry. Such problems arise, e. 
astrophysics [ 161. 
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226 BEN-ART21 AND BIRMAN 

Denoting by I the spatial coordinate and by A(r) the area of the cross section at 
r, our equations are 

(1.1) 

where p, p, u are, respectively, density, pressure, and velocity. z is the mass fraction 
of the unburnt fluid, that is, z = 1 (resp. z = 0) represents the completely unburnt 
(resp. burnt) fluid. The total specific energy E is given by E = e + $2 + 4, where 
4 = d(r) is the external potential (whose derivative 4’(r) is the external force field 
in (1.1)) and e is the specific internal energy (including chemical energy). We are 
assuming an equation-of-state of the form p = p(e, p, z). The reaction rate 
k = k(e, p, z) is assumed to be a positive function. Along a particle path we have 
dz/dt = -k, and z decreases in an irreversible way. 

Our purpose in this work is to provide a robust, high-resolution numerical 
scheme for the time integration of Eq. (1.1). We work within the general framework 
of the GRP (generalized Riemann problem) approach [l-4], which is an analytic 
extension of Godunov’s first-order scheme [9] and has its origins in the work of 
van Leer [lS]. Let us review briefly this approach, leaving the more detailed 
discussion to Section 7 below. 

Suppose that we use equally spaced grid-points ri = i. Ar along the r-axis and 
equal time intervals of size At. By “cell I” we shall refer to the interval extending 
between the “cell boundaries” ri+ 1,2 = (ik $) Ar. We let Qy denote the average value 
of a quantity Q over cell i at time t, = n . At. Similarly, we denote by QrTl:/;? 
the value of Q at the cell boundary ri+ 1/2, averaged over the time interval 
(n At, (n + 1) At). Generally speaking, a “Godunov-type” difference scheme for (1.1) 
is given by 

Ul*‘--Uy= -~,[a(r,+l,2)F(U):;::2_A(ri-1,2)F(U):illi;2] 
I 

- $ [G( U);;$; -G(U);f;/;]-At.H(U;+1’2). (1.2) 

where AVi= j;?;$ A(r) dr. 
While U’.’ + II2 may be obtained implicitly as $( U; + U; + ‘), one must still give an 

appropriate interpretation to the values Uj+ 1,2 . n+ ‘I2 In the Godunov scheme [9] this is 
done as follows. 
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Take Eq. (1.1) with A z 1, N = 0 and with constant initial 
r = 0, namely, 

U(r,O)= U+’ 
1 

u Y>O 

-> r < 0, 

This constitutes the so called “Riemann problem” (REP) and, as is well-known [S], 
e resulting solution R(rlt; U, , U_) is constant along rays Y = 1~. Turning back to 

(1.2), consider the RP with initial conditions U, = e/i:+ 1 and K = iIJl. In the 
Godunov scheme one takes U;$/: = R(0; U;, I) U)), the (constant) solution along 
r=O. As is well-known the resulting scheme is of first-order accuracy and has 
relatively poor resolution properties. In order to upgrade this scheme (in term 
accuracy and resolution) we assume now that the values of U are linearly 
tributed in cells, with possible jumps at r = ri+ 1,2. To imitate t e Godurlov scheme, 
one needs to solve the resulting “initial value problem” for (1.1) at each cell 
ary. However, this is not a Riemann problem anymore, and its solutions are 
not “self-similar.” Thus, to obtain a second-order scheme we need the time evolu- 
tion (to first order) of the flow variables at cell boundaries. This lea 
formulation of the generalized Riemann problem (CRP) for (1.1) as follows: 

Let U,(v) be two linear distributions and consider the initial value probiem for 
(1.1) where, 

U(r, 0) = 
i 

U+(r), r>O 

U-(r), r < 0. 

Let U(r, t) be the solution. Find 

(1.3) 

Note that the application of the GRP to the numerical scheme (1.2) is 
straightforward. Indeed, one takes in (1.3) the two linear distributions as given by 
the values of U” in cells i and i + 1, translating ri+ 1,2 to 0. Taking 1,, = 0, the 
solution (1.4) is obtained and then interpreted as 

Finally, one sets in (1.2) 
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The existence of a solution to the GRP has been studied in detail in several 
recent works [lo, 121. Its wave pattern in a small neighborhood of the singularity 
is completely determined by the solution R(r/t; U, , U-) to the associated Riemann 
problem, which is the RP with initial conditions equal to the limiting values of the 
linear initial data at the discontinuity, that is, using (1.3), 

U, = U+(O+)=rE~+ U+(r), U_ = U-(0-)=,-!:- U-(r). (1.6) 

We have the following. 

PROPOSITION. Let U(r, t) be the solution to the GRP (l.l), (1.3) and let 
R(r/t; U, , U- ) be the solution of the associated RP. Then for every fixed direction 
3, = r/t, 

lim U(llt, t) = R(1; U,, K). (1.7) r-+0+ 

Furthermore, the wave configuration for the GRP near the singularity is the same as 
that for the associated RP. 

The last part of the proposition means that if the solution R(r/t; U,, K) 
involves a shock moving to the right, then this is the case also for the GRP (even 
though its trajectory is not a straight line anymore), etc. 

Our work is an extension of [4], where planar combustion waves were con- 
sidered. Many of the results here are parallel to those obtained in the planar case, 
with suitable modifications due to the presence of external fields and a variable 
cross section. Whenever this is the case, we state clearly the result and list the 
modified formulae, but omit the proof, giving suitable reference to [4]. 

The plan of the paper is as follows. In Section 2 we set up our notation (for con- 
venience we display it in Table I) and discuss the basic thermodynamical and 
characteristic relations of the system. We also introduce the Lagrangian version of 
the equations. In Section 3 we give a detailed analysis of a centered rarefaction 
wave, which is really the heart of the GRP method. In Sections 4 and 5 we give the 
solution to the GRP in the Lagrangian and Eulerian frames, respectively. In 
Section 6 we specialize our results to a y-law gas (where y is independent of the 
chemical structure) with a simplified Arrhenius model for the chemistry. This leads 
to explicit (closed form) formulae for the solution of the GRP, due to the fact that 
the associated RP is explicitly solvable in this case. 

Section 7 carries the reward for our labor in the preceding sections. We use a 
straightforward GRP scheme along the lines discussed above, namely, combining 
(1.2) and (1.5) (a few more details concerning the numerical scheme are added in 
that section). Three numerical examples are discussed in Section 7: (a) a test 
problem suggested by W. F. Noh [13, 171, which involves a single reflected infinite 
shock in spherical geometry; (b) a spherical explosion originating at the center of 
a uniform gas in spherical geometry [14]; (c) the collapse of a gas cluster under an 
external field (simulating self-gravity), with and without chemical reactions [16]. 
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e observe that example (a) has no chemistry or external potentials and has a Ml 
analytic solution. Example (b) possesses an analytic solution in the limit of inhnite 
reaction rate (C-J theory) and contains chemistry but no external potentials. 
Example (c) contains all the novel features of the scheme presented here. 

The only previous (numerical) treatment of the system (Ll), that we are aware 
of, is given in [ 161. However, the method presented there does not seem to have 
the same order of accuracy in the time integration. k comparison of the rest&s in 

e results obtained here is given in Section 7. 

2. PRELIMINARIES AND NOTATION 

In what follows we shall address the GRP as stated in (1.3) (1.4). In a 
the basic flow variables appearing in (1.1 ), we shall also make extensive use of the 
speed of sound c and the “Lagrangian” speed of soun at c2 is 
obtained by differentiating p with respect to p along an owever, 
the concept of entropy needs to be clarified here. Thus, let T= T(e, p, z) be t 
temperature. For each fixed z we define the entropy S(e, pg z) as usual by 

(2.1) 

Solving for e we get e = (p, S, z) and substitutin 
get p = p(S, p, z). We then set 

e equation-of-stage we 

CT2 = ap (S, p, 2). 
8P 

(2.2) 

We shall always indicate the independent variables when differentiaii~g a thermo- 
ynamical function, as has been done in (2.2). Another important function in our 

analysis will be 

4c P, z)=k(e, P, 21; de, p, ~1, (2.3) 

where the reaction rate k is as in (1.1). 
It can easily be checked that the first three equations of (1.1) yield t 

teristic relation 

along 
dr 
27. 

(2.4) 

Using (2.1) and the fourth equation in (1.1) this can be written as, 

dS ,3 
iir=;il;S(e,p,z).$= -k(e, p.'!~Sie, P,z)= -f along 

dr 
ST=“. 

(2.5) 
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We now transform the system (l.l), replacing the coordinate r by the Lagrangian 
coordinate 5 given by 

d< = Ap dr, C(O) = 0. (2.6) 

Replacing the third equation of (1.1) by (2.5), the system can now be written as 

Observe that in (2.7) the functions rz(r), d(r) depend on l, t by expressing r = r(5, t) 
in the Lagrangian frame. 

The characteristic relations. Obviously the contact discontinuity (=particle path) 
5 = const. serves as a double “linearly degenerate” characteristic, with the last two 
equations in (2.7) as its associated characteristic relations. It is not difficult to see 
that the other two characteristic directions are given by dt/dt = &gA (recall that 
g= PC). Proceeding along the same line as in [4, Section 21 we obtain the charac- 
teristic relations 

gdu+dp=[f;lfgucn-g&]dt, along & 
-= +_gA, 
dt (2.8) 

where ~1, A are the functions defined in (2.7), (2.3), respectively. 
Note that the right-hand side in (2.8) consists of three contributions associated, 

respectively, with the chemistry equation, variable cross section and external poten- 
tial. They all vanish for planar non-reactive flow without external fields, where 
YC 0 in (2.7). Their magnitudes determine the amount by which the system (2.7) 
deviates from the corresponding one with Yz 0. In particular, the magnitude of i 
reflects the coupling between the compressible flow and the chemistry equation 
in (2.7). 

Finally, we introduce some notation for the treatment of the GRP for the 
system (2.7). We assume that initially V({, 0) = Vi ([) is piecewise linear with a jump 
at 5 = 0, in analogy to (1.3). This is justified by the fact (to be proved below) that the 
time derivatives at the singularity depend only on the Zimiting values (as i” -+ 0) of the 
initial data (including slopes). Hence we may replace r-derivatives by r-derivatives 
according to (2.6). Letting T/- =lims,,- V_(t), V, =lims,,+ V+(t) (compare 
with (1.6)), we denote by RL(Qt; V, , V-) the Lagrangian solution to the 
associated Riemann problem (see the proposition and the discussion preceding it in 
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the Introduction). Denoting by V(& t) the solution to the GRP for (2.7), our objective 
(in analogy with (1.4)) is to determine 

g (0,O) = lili+ ; T/(0, t). 

Clearly, in this case the line 5 = 0 represents a contact discontinuity across which 
p, S, z may be discontinuous, so that we must compute the corresponding limrting 
values on both sides of this line. 

We shall employ the following notation conventions: Subscripts “ +, -” 
limiting values as 5 -+ 0 + , O-, respectively; an asterisk (*) is used for va 
t=O+ along 5 =0 (along with “+,_” for discontinuous quan 
are given in Table I, where Q = Q(<, t) stands for any one of 
also Fig. 1 in Section 3 below). 

TABLE I 

Notations for the Lagrangian GRP 

Symbol Definition 

limQ([,O)as[+O+,O- 

Constant (initial) slopes for 5 > 0, 5 < 0 

Lagrangian solution of the associated RP 

=R,(O; If,, v-) 

Right and left values for Q discontinuous 
across { = 0 (e.g., Q = p or g) 

a 

Right and left values of 
discontinuous Q 

= lim !im ?? Q(<, 1) 
i-o+ r-o+ at 
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Remark. Note that if two limiting processes are implied, they must be carried 
out in the indicated order. For example (@/al)*, means that first the c-derivative 
is evaluated at 5 = 0+ and its limit is then taken as t -+ O+. Thus, the evaluation 
of (aQ/LJ[): depends on the full solution of the GRP. On the other hand, (@/at)+ 
is computed by first taking the t-derivative at t = 0 (which requires only the initial 
data and the system (2.7)) and then letting 5 + 0,. So, we can form the following 
groups of variables and their derivatives: 

are the given initial data; 
k 

are evaluated from (2.7) and the initial data; 

Q*, (2% are derived from the associated RP; 

(%)‘9 (if): are derived from the solution to the GRP. 

3. RESOLUTION OF A CENTERED RAREFACTION WAVE (CRW) 

The jump discontinuity of the initial data is resolved in terms of a shock, contact 
discontinuities, and centered rarefaction waves. The main analytical ingredient in 
the GRP scheme is a detailed resolution of the CRW. We refer the reader to 
Section 3 of [4] for a full discussion of this issue. The basic idea is to use charac- 
teristic coordinates (a, p) throughout the CRW, so that the singularity is “blown-up” 
into a “full segment” CI = 0 in the characteristic plane. 

Consider Fig. 1, where a CRW travelling to the left is shown. We let 
Z+ : a = const be the family of characteristic curves associated with the slope +gA 
(see (2.8)) and r- : /I = const the family associated with the slope -gA. In accord- 
ance with the proposition stated in the Introduction, the values of flow variables 
along r--curves converge (as the singularity is approached) to the corresponding 
values for the associated RP. In particular, we can take the coordinate /I as the 
normalized slope of r- at 4 = 0, so that 

8=ib*=gf:g- 
at the head characteristic, 
at the tail characteristic. (3.1) 

The characteristic coordinate a, for a given r+ curve, is taken as the c-coordinate 
of its intersection with the head characteristic (p = 1) of the r- rarefaction fan. 
Thus CI = 0 is the singularity. 

All variables, including 5, t, are taken as functions of ~1, /I. In particular, the 
connection between the solution V(a, B) to the GRP, and its associated RP, can be 
expressed as 

vo, P) = RL( - g- 4O)P; v+ 9 v- 1 (see Table I of Section 2). (3.2) 
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k = 6 

FIG. 1. Setup for the generalized Riemann problem 

(Of course we can normalize here, A(O) = 1.) From the last two equations in (2.7) 
we see that S. z, are allowed to jump only across a contact i~~o~ti~~ity (t = O), so 

S(0, p) = s- ) z(0: p)=L. (3.3) 

As for the transformation (a, /I) 3 (5, t), one can prove, sn a way which is com- 
pletely analogous to the proof of Proposition 3.1 in [4] that 

T(a, p) = cgv2 + E(OI, p) . a2, 

t(a, p)= -g:‘A(O)-’ p*CI+?&%, p) .cf2. 
(3.4) 

Next, we note that even though the limiting values S(O, p), ~(0, /?) are co 
(see (3.3)), the limiting values of the gradients (along k- characteristics) S 
z,(O, /?) do not necessarily vanish and, in fact, depend on fl. This is due to 
presence of source terms in Eq. (2.7) for S, z. The following proposition d 
the way in which these gradients vary with p. Observe that the variable cross 
section does not play any role here while the initial slopes enter the equations only 
through the initial conditions (3.6). The proof of the proposition follows ver 
that of Proposition 3.2 in [43 and will be omitted. 

PROPOSITION 3.1. Let f, k in the system (2.7) be expressed in terms cf the 
wariables p, S, z. Then the functions S,(O, j), z,(O, /3) SaFisfv (as functions of/, 
j?* < ,tI < 1) the relations, 
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6) $(P-‘“s,(o,P~~= -g7’~(O)-‘B-2f(P(O,P),S-,z-), 

(ii) f W’l’z,(O, P))= -gI’A(o)-* B-2QP(o, PI, s-,z-1, 

supplemented with the initial conditions (at b = l), 

(3.5) 

6) 
(ii) 

_ +A(O)-‘gl’f(p-,S-,z-), 
+ A(O)-‘gz’k(p-) s-, z-). 

(3.6) 

Having at our disposal the functions S,(O, p), z,(O, p), we can now proceed to 
derive expressions for the gradients Q,(O, p) of all flow variables. This is indeed the 
heart of the GRP method [l-4]. As in previous applications of this method, it 
turns out that it is easiest to start out with an expression for ~~(0, p). In what 
follows we use the functions 1, y1 as in (2.3), (2.7), respectively. We have 

THEOREM 3.2. Let a(j) = (a/&x) U(CI, p)laxO, and let g= pc be represented as 
g(p, S, z). Then a(p) satisfies 

-$ a(P) = Y(P), p*<p<1, (3.7) 

where, 

Y(P)= -; g:2A(0)-1 p-“‘$ (pqo, p)) 

-f g~‘p-’ (3.8) 

This equation is supplemented by the initial condition, 

a(l)= ($)- + g:’ (5) +A(O)-' g:'@(O). (3.9) 

The proof of the theorem proceeds along the same lines as that of Theorem 3.3 
in [4] and will be omitted. We note that Y(p) is the sum of four terms whichs are 
related to different effects in the system (2.7) (or (1.1)). Thus the first one is a 
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contribution of the chemical source term, the second originates from the ~o~-~~r~ 
slopes of initial data, the third is due to the variation of cross section, and the 
fourth comes from the presence of a non-constant external potential. 

Once the theorem is established, it is easy to derive expressions for the charac- 
teristic slopes of other flow variables. They are obtained from the ~hara~ter~st~~ 
relations (2.8) and the representation of p in terms ofp, %, z (where we have (2.2)). 

COROLLARY 3.3. The characteristic slopes of p, p in the r~ref~ctio~fan are given 
bY 

4. THE LAGRANGIAN SOLUTION OF THE G 

In this section we give the full solution of the generalized 
(1.3)-(1.4) in the Lagrangian setting (2.7). We seek here expres 
(see Table I in Section 2) in terms of the initial data, having a jump dis~o~ti~ 
at 5 = 0. Velocity and pressure are continuous across the interface, and since 
time derivatives of S, z are given by the system (2.7) directly (different on the two 
sides of 5 =O!) it remains only to evaluate (@/at)*, (&jar)*. An essential feature 
of the GRP method is that these two derivatives can be easily determined from the 
initial data and the solution V* of the associated RP. In fact, we have 

THEOREM 4.1. Assume the configuration of Fig. 1 (Section 3). The der~~~t~es 
(+'piat)*, (au/at)* satisfy a pair of linear equations 

a- (g)*+b- (Tj)*=d- > 

a+ ($)f+b+ (;)*=L 

The coefficients a+, b + , d, (resp. a-, b_ , cP ) are determined explicitly from the 
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values of the RP solution V* and the initial conditions V, , (aV/a<) + (resp. 
V_ , (aV/ag)-). More speclyically, on the rarefaction side we have 

a_ = 1, b- = (gT)-‘, 

d- = -A(0).(g-g*)‘:2.a(/?*)-u*c5 .n(O)-(g%)-‘.A(O,/?*), 
(4.3) 

where a(/?) is as in Theorem 3.2 and the functions A, n, are defined by (2.3), (2.7). 
For a,, b,, d, one uses the Hugoniot (u, p) relation. Explicit expressions for a 

y-law gas are given in Theorem 6.3 below. 

The proof of this theorem is again parallel to that of Theorem 4.1 in [4] and will 
be omitted. Observe that while the variation of the cross section, n(O), appears in 
the expression for d-, the potential 4 does not play a role here. 

Once the time derivatives of p, u along 5 = 0 (a streamline) are determined, it is 
easy to compute the full array of such derivatives, namely (aV/at)*. Furthermore, 
using once again the notation of Table I, Section 2, the spatial derivatives (aV/ag)*, 
at the contact discontinuity can be evaluated with the help of the basic equa- 
tions (2.7). We refer the reader to the Appendix below for the detailed expressions. 
However, the following observation is important. 

PROPOSITION 4.2. In Lagrangian coordinates, along any line 5 = const, one has 

ap 
at=c 

-2 ap 
i t+i.(e, p,z) . 1 (4.4) 

ProoJ: Write p in terms of p, S, z, so that along a particle path, by (2.2), (2.5), 

ap a 
z=c 

-2 p as aZ 
~+Ps~+Pz,,=c -‘g-k Ps 

[ 

We, P, 4 
aZ +Pz . 1 

But using the identity p = p(p(e, p, z), S(e, p, z), z) we get, by differentiation, 

ask P, 4 Me, P, 4 
pS aZ +pz= -Pp az > 

which implies (4.4) (see (2.3) for the definition of 2). 1 

It is interesting to compare (4.4) with its “non-reactive” analogue ap/at = 
c-‘(ap/at). Thus, the deviation along a streamline is proportional to 2. This is in 
line with the characteristic expressions (2.8), where the magnitude of i reflects the 
strength of the coupling between the fluid-dynamical (compressible) phase of the 
flow and the chemical (reactive) phase. 
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5. THE EULERIAN SOLUTION OF THE 6 

this section we address the main goal of this work, namely, the solution of the 
(1.3)(1.4) for the system (1.1). 

rice again we assume the wave configuration of Fig. 1, with the jump lo 
r = 0. As an auxiliary tool we shall use the Lagrangian coordinate 5, deli 
(2.6). As was shown in the previous discussion, the time derivatives 
singularity depend only on the spatial slopes as 5 -+ 0. ay therefore assume 
that the initial values of flow variables are simnlta~~o~s~y linear in Y and s’ (on 
either side of the jump), with slopes related by 

Using the notation in (1.4) we see by (1.7) that 

U(0, 0) = R(0; u,, hi-). (5.2) 

In order to evaluate (aU/at)(O, 0) we shall simply use the chain rule and t 
derivatives along t = 0. To this end let t(t) denote the representation of r = 0 in t 
(4, t) frame. Clearly, r(Qt), t) = 0 and (2.4) imply 

C(t) = -40) d<(t), t) .44(f), t), i”(0) = 0. (5.3) 

Thus, if is any flow variable which can be expressed either in the Eulerian or 
Lagrangian coordinates (displaying coordinates for clarity), we obtain 

Observe that when t -+ 0, the left-hand side in this equation converges to t 
solution ( at)(O, 0) while in the right-hand side we get limits which are all know 
from the rangian solution. Indeed, by (1.7) we have 

P(O, t) 4&f) -+ P(O, 0) 40>0)> 

ich is the associated RP solution along r = 0. Also, the limits of 
(5, t)/dt and aQ(t, t)/at are determined by the position of t(t) 

various waves. For example, if t(t) lies between the contact discontinuity (5 = 
and the shock moving to the right, then by the notation of Table 

Of course, these considerations are only valid if r = 0 is not contained in a rarefac- 
tion fan, namely, that it is not a sonic line. 

To summarize the above, we have, 
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THEOREM 5.1 (non-sonic case). In the non-sonic case the Eulerian solution to the 
GRP is given by 

g (0,O) = lim [ -1 wt, t) 
- 40) P(O, 0) a-4 0) . ---Yg- 

I I 
. (5.4) 

t-0 5 =5(f) r = e(t) 

The derivatives in the right-hand side are determined from the Lagrangian solution to 
the GRP and the position of 5 = t(t) (i.e., r = 0) in the wave configuration. 

We remark that by the discussion following the proposition in the Introduction, 
the position of r(t) is also determined by the solution to the associated RP. 

Finally, let us turn to the sonic case. Here, of course, (5.4) is meaningless and we 
have to go back to the characteristic structure of the fan as discussed in Section 3. 
Throughout the fan, a variable Q is expressed as Q(g, /3). The line r = 0 is sonic, so 
that it is tangent to some r--curve (Fig. 1) p = PO. The slope Jo is determined by 

40, Bo) = 409 PO), (5.5) 

where ~(0, p), ~(0, 8) are as in (3.2). 
NOW r==O is represented in the fan by (a(t), P(t)) (replacing l(t) of (5.3)) and 

instead of (5.4) one obtains 

g (0,O) = g (0, Al). a’(0) + gi (0, PO). 8’(O). (5.6) 

The right-hand side in (5.6) is known from the solution (Section 3) of the CRW. 
More specifically, we have 

THEOREM 5.2 (sonic case). Let r = 0 be a sonic line represented by (a(t), /l(t)) 
with (W), B(O)) = (0, PO) in the r--rarefaction fan. Let lJ(cr, p) be the solution of 
the GRP in the fan, where U(0, p) is (by (1.7)) the solution for the associated RP and 
the variation (a/&) U(GI, p) Ia =. is obtained in Section 3 (Theorem 3.2 and 
Corollary 3.3). Then the solution of the GRP in Eulerian coordinates is given by 
Eq. (5.6), where 

a’(0) = -A(O) g- . PA’“, 

P’(O) = ; 40) BY’ [ f$ (0, PO) -i (Pm PO)]. 
(5.7) 

The proof of the formulae (5.7) is identical with that given in Section 5 of [4] 
and will be omitted. 

6. A SPECIAL CASE: Y-LAW GAS AND A SIMPLIFIED ARRHENIUS MODEL 

In this section we give explicit formulae for the case in which the equation of 
state is given by 

P = (Y - 1) de - 40z)2 Y > 1, qo > 0, (6.1) 
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where q. is the constant chemical energy released when a unit mass of unburnt gas 
is totally burnt and the adiabatic exponent y is fixed independently of the other 
thermodynamic variables. 

From our definition of entropy (2.1), combined with (6.1) we see that a suita 
choice for S could be, 

1 P s=----= 
Y--lPY 

pl -‘(e - q()z). 

In addition to Eq. (6.1) we take a reaction rate (the function k of ( 1.1)) which is 
a “simplified Arrhenius” model, as in [4, 71, 

k= K.z. H(T- T,), K>O, T= PIP, (6J 1 

where, 

and T, is a given (“critical”) temperature. The variation of entropy along a 
streamline (see Eq. (2.5)) is then given by 

f= -Kq,p1+zd7(T- T‘), (6.4) 

and the function /1 (see Eq. (2.3)) which represents the contribution of the chemistry 
to the variation of the Riemann invariants (see Eq. (2.8)) is given by 

L(P, P, z)= -6~ - 1) Kq,pz,WT- T,). (6.3 

Observe that the magnitude of i is essentially determined by the produ 
which therefore reflects the amount of “coupling” between the chemical a 
fluid dynamical phases of the flow (compare with the remarks following Eq. (2.8)). 

In the case at hand, the solution of the CRP can be obtained explicitly. This 
means that one has explicit expressions for the characteristic derivatives in the 
CRW (Section 3), and in particular for a(P) (Theorem 3.2). Also, the 
curve in this case is given by an explicit algebraic expression. Hence one can 
calculate (in closed form) the coefficients a+, b,, and d, in Theorem 4.1, as well 
as /IO and the other quantities needed in thesonic case (Theorem 5.2). 

Clearly, the solution to the associated RP in our case is identical with that of 
[4], so we skip it completely. The reader may hnd the details in Proposition 6.1 
there. Also, all the expressions in the simplified model here are obtaine 
straightforward substitution in the general formulae of Sections 3, 4 above a 
application of the explicit expression for the Hugoniot curve, taking into account 
the additional features of variable cross section and external fields. So in what 
follows we simply list the results. The reader may consult Section 6 of [4 J for more 
details. 

581/86/l-16 
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Corresponding to the critical temperature T, we have in the rarefaction fan a 
value /3, for which the associated RP yields, 

T(0, p.,)=pfl= T,. 
3 c 

(6.6) 

THEOREM 6.1. Let S,(O, /!I), z,(O, /I), and a(/?) = ~~(0, 8) be as in Proposition 3.1 
and Theorem 3.2. Then in our model we have the following expressions: 

i 

P”“S,(O, 1 ), PC219 

s&4 PI = 
/3’“[S,(O, l)-K.qoA(0)-‘z_gI’P1-Y .~(B'l-3y~,"+"-1)1, 

1 >PaP,, 
p2 . p, 1’2s,(o, PC), P < PC < 1, 

-KqJ(O)-‘z- gIlp?.H(l -PC). 

_I 

(6.7) 

(6.8) 

P2za(0, 11, PC 3 4 
ZJO, p) = p’“[z,(o, 1) +KgI’A(O)-’ z_ . (p-l - l)], 1 >aaB,, 

P2 . P~1’2za(o, P,), B < PC -=z 1, 

az 
Tm I)= 2 _ 

0 
+Kz_ g24(O)-‘.H(l -/I,). 

a(P) = a,(P) + as(P) + a,(B), 

where, with A- = -(y - 1) Kq,z_ p- .H(l -p,) (see (6.5)), 

a,(B) = 

(6.9) 

(6.10) 

(6.11) 

p, 3 1. 

I 

(~(3~-1)/2(~+1)-q, 

(3Y--m(y+l)- (3Y-lmy+lq 
P, 2 

/?<p,<1. 
(6.12) 
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a,oq== -prlA(0)-ln(O) 
! 
(y-,1,3+2c- .(p(~--3)/X~~+ij-l~ 

- --. z-5 (b (3Y-waY+l)- 1) ) 
1 

a,(j) = A(O)-” gL’$Y(0)(p-1’2- 1). jcin4: 

&VW&S 6.2. (a) Observe that a,(P), a,(/Q ect, respectively, the 
planar part, the contribution due to the variable cross section (n(O) = ~‘(O)/~(~) by 
(2.7)) and the contribution due to the external field. 

(b) It is interesting that the expression (6.13) for a,(P) is singular for y = 3, 5” 
For these two values one obtains the correct expressions by taking the analytic 
limits as y + 3 or y 4 $ (compare [3]). 

(c) The case fi, 3 1 means simply that there is no chemical rea6tio 

throughout the whole rarefaction wave, since clearly the temperature decreases in 
the direction of decreasing /3. 

call that by (4.3) the coefficients a-, b- , and d- in (4.1) are known one 
the solution of the associated RP) are known. Thus, it remains to 

explicit expressions for a + , 6, , and d, . In this setting (Fig. 1) 
that there is a shock wave travelling to the right. Obviously, the 
relation for this shock is not affected by the variable cross section 
of an external potential. However, the transition from spatial to time de~vatives 
(and vice versa) involves these two additional ingredients. 
derivation for the formulae in the following theorem is i 
Section 6 in [4], but there are additional terms. 

THEOREM 6.3. Assume the wave configuration of Fig. 1 as well QS (6.1), (6.3) for 
the equation of state and the reaction rate. Then the coefficients a,, b + ) d, in (4.2) 
are given by the following expressions, where W, = A(O)((P* - p+ )/ 
the (Lagrangi~~~ speed of the shock, p2 = (y - l)/(y f l), and n(O) = A 

1 P-P+ a,=2-- 
2p” +P2P+’ 

(6.15) 

b+,l U*--ll+ 
2 P* + iu”P+ 

-(g*,)-’ A(O)-’ w+ -A(O) WY’, 

~+=L~(~)++L~(~)+*L~(~)++L~~L~.~~o~+L~,~f~~~, 

where 

~++~*f$~ 
+ 

]+g:A(Oj' WI’+ 
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L =-A(O) P 2+L”’ ‘*--+ 
2 P”M2P+ 1 ’ 

L,= - +*-u+), 
+ 

(6.19) 

ZL*--24 2 

L, = + 2 u, +’ g+ ‘+ ‘+ 
P* +P2P+ 1 + A(0) W,‘u+ c, g, + A(O)-’ W, u*(p*,)-‘, 

(6.21) 

L1=R, A(()) W;‘+“z ‘*--+ 
2 P”+F*P+ 1 

+,I*, ,A(O)-’ W+(g*+)-2, 

A+ =m+> P+9Z+), A*, = 4~;~ p*+ I z+) (see (6.5)), (6.22) 

L,= -2+ P-p+ 
2(P* +P2P+)’ 

(6.23) 

This concludes the discussion of the special case. The formulae of this section 
enable one to work in the context of the Lagrangian solution of the GRP 
(Section 4) or the Eulerian solution (Section 5) with fully explicit expressions for the 
fluxes. Our numerical examples in the next section are all built on this special case. 

7. NUMERICAL EXAMPLES 

The GRP scheme is based on a direct application of the analytic solution at cell- 
boundaries, as outlined in the Introduction, Equations (1.2) and (1.5). However, 
using the special case of Section 6 we have a non-smooth reaction rate, involving 
a jump discontinuity at the critical temperature T, (see Eq. (6.3)). Hence some care 
is needed when discretizing the fourth equation in (1.1). 

Let us summarize briefly the steps taken in the implementation of the 
GRP method. 

We assume that at time t = t, = y1 At we are given all cell averages Uy as well as 
the variations (AU):. These can be translated into either Lagrangian or Eulerian 
(constant) slopes using (2.6). We now proceed as follows. 

Step 1. At each cell boundary the GRP is solved according to Section 5 and 
IJy$f is evaluated as in (1.5). Then the fluxes F(U);:i//Z, G(U)y:,‘l,2 are deter- 
mined. 

Step 2. Using the difference scheme (1.2) for the first two equations in (1.1) 
the new densities and velocities py+l and ur+l are calculated. 

Step 3. The source term for the chemistry equation (the fourth component of 
H( u; + ‘I2 ) in (1.2)) is calculated as follows (we are using the special form (6.3) and 
the solution UFT,::’ to the GRP): 
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Step 4. The third and fourth equations in (1.2) are then solved 
simultaneously, thus obtaining the first approximations 5:’ ‘, EyC1 and hence also 
fir+’ and c+‘. Here we are using (7.1) for the fourth equation 

Step 5. A new source term for the chemistry equation is determine 

Step 6. If in (7.2) (kp)r’l12 # (&J);+“~, we repeat Step 4 with the new source 
term (kp); + ‘I2 thus obtaining final results for pT+ ‘, zl” ‘, el+ ‘. 

Step 7. The new variations in cells are determined by 

(AU);+” = U;;;,,- U;:;,,, (7.3) 

and a simple monotonicity algorithm is applied [ 1, 453. 

This concludes the discussion of the scheme and we can now proceed to discuss 
concrete numerical examples. We have made an attempt to exhaust the various 
combinations of ingredients in (1.1 ), namely, chemical reactions, variable cross 
section, and external fields. Table II lists those ingredients included in each example. 

As a rule, we work with a constant time-step dt in all examples. This forces a 
relatively low CFL number. Of course, the presence of a “stiff” reaction rate and 
our explicit discretization of the chemistry equation also require a low CFE 
number. 

EXAMPLE 1 (infinite reflected shock). As our first example we take. a test 
blem involving an infinite reflected shock in spherical geometry, pro 

. I?. Noh [13] in an unpublished memorandum (see [17]). 
An infinite sphere of gas is initially cold with pure kinetic energy. 

equation-of-state (6.1) is used with y = g and the initial (uniform) values for the 
thermodynamic variables are (in any convenient units) 

p= 1, p = 0. 

At time ZZ= 0 the gas is uniformly imploding with velocity u = - 8. 

Example 

TABLE II 

Various Ingredients in the Numerical Examples 

External field Chemistry Variable cross section 

I 
2 

3(a) 
3(b) 

- 

Yes 

Yes 

Yes 
- 

Yes 

Yes 
Yes 

Yes 
Yes 
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Clearly the initial conditions imply that at t = 0 an infinite shock is reflected from 
the origin and brings the incoming gas to rest. Since the infinite shock compression 
is (y + l)/(y - 1) = 4 it follows directly from the Rankine-Hugoniot conditions that 
the (uniform) speed of the reflected shock is W= f. At time t = 3 it reaches the 
radius r = 1 where it encouters fluid particles that originated at r = 4. Hence the 
(uniform) density behind the shock is given by (471/3)p= (47r/3)43; that is, p=64. 
The Rankine-Hugoniot condition now implies that the (uniform) pressure behind 
the shock is p = y. The velocity and pressure profiles ahead of the shock are equal 
to their initial values. The density varies due to geometrical compression. The 
spherical shell of width dr, initially located at r 3 $t, reaches the radius r - t at 
time t, so that 4nr’ dr = 47cnp(r - t, t)(r - t)2 dr, whence, 

r2 
dr - 6 t) = (r _ tj22 

VELOCITY RT T= 225.0 

4 
r3-t. 

3 

PRESSURE RT T= 225.0 

DENSITY AT T- 225.0 

FIG. 2. Reflection of spherical infinite shock: L= 100.; DX= 1.000; DT=0.2500; y= 1.67; 
CFLMAX = 0.311. 
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This concludes the analytic solution for this problem. In the calculation we took 
100 (Eulerian) points equally spaced with dr = I. We used a time step of At = 0.25 
The results after 900 time steps (t = 225) are shown in Fig. 2. The solid line gives 
tbe exact solution while the dots represent the calculated quantities. It is seen that 
the average calculated density is 63.14 (compared with 64 for the exact one). The 
location of the shock is obtained with very high accuracy, and so is the density 
profile ahead of the shock. 

EXAMPLE 2 (Taylor blast wave). In this example we calculate the flow profiles 
behind a spherical detonation wave initiated at the origin r = 0. e assume that the 
explosion propagates into a uniform unburnt gas at rest, where p = poi p = pO. 

Using the Chapman-Jouguet model. (namely, a sharp reaction front) an 
ssumption that the outward blast wave travels at the C-J speed, 6. I. Taylor Cl42 
as shown that the solution is self-similar in the sense that all quantities depend on 

a/l only. Thus, the system (1.1) is reduced to a set of coupled ordinary differential 
equations in terms of the similarity coordinate x = r/l. 

In our numerical treatment we started (at t = 0) with Taylor’s profile where t 
shock is located at x = 2. We are using 100 (Eulerian) points equally distributes 
over the interval 0 d x < 10, and take a constant time step de = 4.tOh3 ps. Followin 
Taylor, we take in the unburnt gas ahead of the shock, 

p0 = 1.0135. 10e6 Mbar, p. = 1.56 gr/cm3. 

For both the burnt and unburnt gas we take the same equation-of-state (6.1) with 

y = 3.09, q,=O.2381~10~" bar cm3jgr. 

For the reaction rate we take the simplified Arrhenius mo 
T, = 0.13245 .10-l Mbar cm3/gr (recall that T= p/p). 

0ur calculations were carried out for 2500 time steps, u to t = 10 psec, usinrg 
two different values for K in (6.3): 

(a) M= 159.5 pss’ (=25.(U,,/dx)), 
(b) M=254.2ps-' (=4O.(U,/dx)). 

The resulting profiles are shown in Figs. 3a and b, respectively. The solid line 
represents Taylor’s exact solution (C-J model). 

Note that while Taylor’s solution is obtained by assuming the Chapman- 
theory as well as a C-J uniform shock speed, the reaction rates in the n 
calculation are finite. Thus there is no a priori reason to assume that the reaction 
ZO should move at exactly the C-J speed. 

e note that calculations for the Taylor blast wave, using the random chokce 
method, were reported in [IS]. However, in this method the “chemistry eq~a~~~~‘~ 
(the fourth equation in (1.1)) is replaced by the Chapman-Jouguet metho 
in principle the method cannot produce anything but the C-J speed for 
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VELOCITY RT T= 10.00 PRESSURE RT T= 10.00 
.2OE*00 .20E-00 

a 

DENSITY FIT T.= 10.00 

TEMP flT TX 10.00 

ENTROPY FIT T- 10~00 

O.00E+00 

/ 

i 
I---...-.-*-.*I-Y-.-...~.~.” 

z RT T= 10.00 

FIG. 3(a). Taylor explosion profile: K = 159.5 ps -‘; L = 100.; DX = O.lOOOE + 00; DT = 0.4OOOOE - 02; 
EXPLICIT = TRUE; TC = 0.132E - 01; RATE = 25.OO*DCJ/DX; y = 3.09; CFLMAX = 0.231E - 01; 
D = 0.60948. 
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VELOCITY AT T- 10.00 PRESS?IRE P,T T= !0.03 

DENSITY RT T- 10~00 

.2x-01, 

ENTROPY ';T T: 13.03 

Or 

TEMP FIT T- 10.00 z AT T= 10.00 

FIG. 3(b). Taylor explosion profile: K = 254.2 ps I; L = 100.; DX = O.lOOOE + 00; DT = 0.4OOOOE - 02; 
EXPLICIT = TRUE; TC = 0.132E - 01; RATE = 40.00*DGJ/DX; i' = 3.09; CFLMAX = 0.22% -~ 01; 
D=O.66008. 

581/86/l-17 
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Stated differently, the Riemann problem presented by Eq. (69) in [IS] should 
actually produce a single jump for Z, across the contact discontinuity. Any other 
solution violates the Rankine-Hugoniot condition for (1.1). We refer the reader to 
[4] for a further discussion of this’point. 

EXAMPLE 3 (gas in cluster). This problem is taken from [16]. We consider a 
uniform gas, initially at rest, and subject to an external potential of the form, 

d(Y) = -( 1 + Y2))? 

The gas starts to collapse under the external force (directed inward) and pressure, 
density, and temperature begin to rise. We shall now examine what happens in two 

VELOCITY RT T= 2.000 PRESSURE AT T= 

. ..* ..’ 

. ..- 
. ..- 

. ..* 

. ..’ 
/ 

. ..- 

..** 
. ..- 

-. . . . . . . . . . a.‘. 
. . . . 

DENSITY RT T= 2.000 ENTROPY RT T= 2.000 

. . . ..,.........~............................................ 
I --.* 

--...... 
O.ODErDO . . . . . . . . . . ..#................................ -.80E+DI J 

O.OOE+DO .2!x+o, O.ooE*m .20E4I 

:4 

FIG. 4(a). Non-reactive collapsing gas: Shock is formed; POTEN= -l/J- (no micro- 
physics); L = 100.; DX = 0.30OOE - 01; DT = 0.5OOOOE - 02; y = 1.67; CFLMAX = 0.167. 
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cases: (a) non-reactive flow; (b) reactive flow. In both cases the unifor initsa 
values (in any convenient units) are 

p,=O.O067, po= 1. 

The equation-of-state is (6.1) with y = 3. 
In both cases we are using an equally spaced (Eulerian) grid of 100 cells with 

Ar = @.03. Non-reflective boundary conditions are applied at Y = 3. 

Case (a). Non-reactive flow. As the pressure gradient builds up, a sh 
close to the center (Fig. 4a where only the first 67 cells are shown), 
collapsing gas to a halt. At this point the density near the center 
factor of about 100, while the pressure there is 
magnitude. In Fig. 4b we show the flow profiles at 1= 

VELOITY RT T- 4.000 PRESSURE 9: T- 4”OGC 

.15E+02 -~ 

DENSITY RT TX 4.000 

,CE*O3, 

EhTROPY PT T= 4.000 

FIG. 4(b). Non-reactive collapsing gas: A sharp shock is moving out; POTEN = -l/,/m (no 
microphysics); L = 100.; DX = 0.3OOOE - 01; DT = OSOOOOE - 02; y = 1.67; CFLMAX = 0.167. 



250 BEN-ARTZI AND BIRMAN 

PRESSURE FIT T= 1.550 VELOCITY FIT T- 1.550 

;DE*o) . ----.-...‘-e..--.-“-~.- . . . . c~.C”” . ..“....“... or ..,_.....“. 
0 .OOE+Oo .3x 41 

RT T= 1.550 DENSITY RT T- 1.550 

-02 
1 

z HT T= 1.550 TEMP AT T= 1.550 

FIG. 5(a). Reactive collapsing gas, shortly before ignition: POTEN= -l/J= (with micro- 
physics); L = 100.; DX = 0.3OOOE - 01; DT = O.lOOOOE - 02; EXPLICIT = TRUE; TC = 0.100; 
RATE = 20.0; y = 1.67; CFLMAX = 0.240E - 01. 
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VELOCiTV 77 T- 1.600 

.20:-o, 
/b 

I * 
I 

_.*.._......... ---“-- 

-.60E*00/ 
*.ss 

-.... m..... 
._ m...._.....C. .--- 

@.......” 

D.llCE.OO .30E*oI 

32 
r 
I 

DENS:TY AT T- 1.600 

1 

TEMP AT T= 1~600 

4DE+C'/__________1 

0. 

z Qi T= 1.630 

FIG. 5(b). Reactive collapsing gas, shortly after ignition: POTEN= -l/J’- (with micro- 
physics); L = 100.; DX = 0.3OOOE - 01; DT = O.lOOQOE - 02; EXPLICIT = TRUE; TC = 0.1 
RATE = 20.0; y = 1.67; CFLMAX = 0.483E - 01. 
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VELOCITY FIT T= 2.400 0, r C 

: 

*..- 
,:- 

““..” 
“..... 

. . . . “..“-- 
” _...... 4” 

1 __...“--- 

DENSITY RT T= 2.400 

PRESSURE AT T- 2.400 
-BOE*O, 

: 
.’ 

“..” .J . 
r ~--...” _...-....._..” ..“-. ---- 

ENTROPY RT T- 2.400 

TEMP AT TX 2.400 

.12E*O 

‘i 
z AT T: 2.400 

FIG. 5(c). Reactive collapsing gas, when most of the gas is burnt out: POTEN = -l/J’- (with 
microphysics); L = 100.; DX = 0.30OOE - 01; DT = O.lOOOOE - 02; EXPLICIT = TRUE; TC = 0.100; 
RATE = 20.0; y = 1.67; CFLMAX = 0.131. 
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sharp and the calculated profiles are very smooth. Our results here are in good 
agreement with those obtained by Yahil et al. [16]. 

Case (b). Reactive flow. The initial conditions here are the same as in Case (a), 
but the gas is reactive. The equation-of-state is again (6.1), with 

and the reaction rate is given by (6.3), with 

K=20, T,=Q.l. 

Note that our reaction equation is different from that of [16]. 
The initial stages of the flow are similar to those of Case (a). However, as the gas 

collapses it heats up and the temperature near the center rises above T,. 
point the gas is ignited and brought to a halt. This happens approximately at 
t = 1.55, much earlier than the formation of the fluid dynamical shock in Case (a). 
Figure 5a shows the flow profiles at this time, just before ignition. The subse 
flow is of course very different from that of the former case. In Fig. 5b we plot the 
flow profiles at t = 1.6 just after ignition. The density is about 55 times its orig!nal 
value, while the pressure is around 10,500 times its original value pO. Thus, com- 

red to the non-reactive case, the temperatures reached here are much higher (in 
e temperature graph the critical temperature T, is marked by a hor~z~~ta~ fine). 

In Fig. 5c we show the flow at a later stage, t = 2.4. Note the change of scale 
between Figs. 5b and c. We observe that the outgoing wave consists of a pr 
pressive shock followed by a reaction zone which occupies about PO cells. As i 
previous case the shock is sharp and the profiles behind it axe smooth. Even thoug 
our reaction equation is not identical with that of [16] (and the calculation there 
is Lagrangian), our results are qualitatively in good agreement with those obtaine 
there. 

APPENDIX 

Following Theorem 4.1, we stated that once the time derivatives (aV/5’ai)* are 
known (along a contact discontinuity), the spatial derivatives (aV/a<)*+ can be 
evaluated. The method of derivation is identical to that of Section 4 in [4], but 
extra terms appear as a result of the additional external fields and variable cross 
section. We are using the wave configuration of Fig. 1. 

Derivatives behind the Shock ( W, = A(0) . (p* - p + )/(u* - u + ) = Lagrangian skzock 
speed) 

= -A(O)-1 (AA) 
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au * 0 z, = -A(O)-'(g*,)-' $ *+,qpS,e*,,z+) 
[( > 

-A(O)-' (p*,)-' .n(O)u*, A'(O) n(O)=- 
A(O) ' (A.21 

+ ~~‘~C~~~~~~*,,~+~-~~~+,p+,~+~l 

(with k as in (1.1)). 

= - [3W;‘(c*,)-*+ A(O)* (p*,)* W;‘] $ * 
0 

* 
+3A(O)(p*,)* WY’ 

(A.3) 

+3A(0)2 (P*,)~ W;’ $ 
0 + 

- [3 W, + A(O)* g”, W;‘] . A(O)@*,)* W;* 

-C3W_1(~~)~2~(p*,,e*,,z+)+AO2(p5)2W~~E.~~+,e+,z+)l 

+ 3A(O)(& )” Wr”4’(0) 

-A(O)(p:)* Wi2[A(0) W;lg:u+p;l+A(0)-lu+ W+p,’ 

+2W+ A(O)-’ (p*,)-’ u*] .n(O). (A.4) 

Derivatives behind the Rarefaction Wave 

Here we list the derivatives (@/at)? behind a rarefaction wave (in the 
configuration of Fig. 1). They are obtained either from Eqs. (2.7) or from the 
directional derivatives (Q/&)(0, /I*) along the tail characteristic of the rarefaction 
fan. In the latter case one simply uses the chain rule, 

f2(o,/i”)q.g .g(o,P*)+(gy ($w 

=(~)‘.(~*,l%(!$; .g11A(0)-‘(P*)-1’2 (A.5) 

(see Eq. (3.4)). The derivative (aQ/&)(O, /3*) is known from Theorem 3.2 and 
Corollary 3.3, while (@/at)? (along the left-hand side of the contact discontinuity) 
is known from the analysis of Section 4. Thus (A.5) can be solved for (aQ/@)?. 
This method applies especially for the case of (ap/@)? , which cannot be recovered 
from the system (2.7). 
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We list the relevant formulae, 

255 

(Ah) 

= -A(O)-' (g*)-2 -A(O)-” (pT)- i u* .nfC), 

($)” q-“‘(g) (O,p*)+A(O)-’ (gy ($!)I. (A.81 
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